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Gronwall's lemma embodies an inequality which is often referred

to, and justifiably so, as the fundamental inequality of differential

equations. Its usefulness is felt from the very beginning when one en-

counters the most elementary theorem on the existence and uniqueness of

solutions and their dependence on parameters and initial values. Further-

more, it continues to be an extremely simple yet effective tool as one

proceeds to the more delicate and sophisticated considerations in the

theory of perturbations and stability. A statement of this lemma usually

proceeds somewhat as follows:

Lemma i (Gronwall's Lemma). Let x, f and z be real-valued

piecewise continuous functions defined on a real interval [a, b], and

let z be nonnegative on this interval. If for all t in [a, b]

t

x(t) -_ f(t) + S z(xlx(x)dx,
a

(i)
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then

t t

x(t) -_f(t) + f z(T)f(_)exp(f z(s)ds)dT, (2)

for all t in [a, b].

The proof follows in a completely straight-forward manner. We

have only to observe that if we let F(t) denote the integral in (i),

then (i) implies F'(t) - z(t)F(t) _-z(t)f(t) at all points of con-
t

tinuity of z(t)x(t). Multiplying through by exp(- _ z(%.)dT) and in-
a

tegrati_ from a to t it follows immediately that

t t t

f z(T)f(%.)exp(f z(s)ds)d%. _>f z(%.)x(%.)dT,
a % a

which, of course, implies (2). The advantage of inequality (2) over

inequality (i) becomes apparent if we consider f and z as known

functions and x as unknown. That is, inequality (2) gives us a com-

pletely known function which majorizes x. One may also observe that

inequality (2) is the best possible resulting from inequality (i) in the

sense that if inequality is replaced by equality in (i) then the same

may be done in (2). Many applications of this lemma may be found in

reference [_], [_], and [6] as well as in numerous other books and

papers.

In this paper we shall present a series of lemmas which contain

i_qualities which may be used in the theory of finite difference equa-

tions and more general discontinuous functional equations in essentially
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the same capacity as the inequalities of Lemma 1 are used in the theory

of differential equations. To illustrate the application of these

lemmas several results concerning boundedness and stability of solutions

are presented.

As one might expect, it is possible to construct lemmas similar

to the Gronwall Lemma involving sums rather than integrals which may

be effectively used in the analysis of finite difference equations.

The most precise and complete analogue for the discrete case may be

stated as follows.

Lemma 2. Let [Xk} , [fk] , and [Zk] , k = 0,i, ..., m,

real valued sequences and let [Zk] be nonnegative. If for

k = 0,1, -''3 m,

be

-_ fk + Xx k zixiJ
0 __ i<k

(3)

then

-_fk + Z [ _ (1 + zj)zifi],x k

0 __ i <k i < j <k

(4)

for k = 0_ l, ..._ m.

Note: In inequality (4) the term _i <AJk(1 + zj) shou]d be
i<j

interpreted as unity when k _- i. This convention will be adopted

throughout this paper. Furthermore, if we are considering a set of

matrices [Aj}, j = i, ..., k, then _A. denotes the product
i<j <J_

Ai+iAi+ 2 ... Ak_l, whereas _ A. denotes the product
k>j >i J

"'"Ai+l"
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We observe easily that if c is a constant and zi -_ c for

i = O,1, ..., k-l, then substituting c for the zi's in (4) pro-

duces the inequality

Xk -_fk + c r. (1 + c) k'i-1
O-_i<k fi"

On the other hand 3 if b is a constant vector such that fi _-b for

i = Oj .--3 kj then substituting b for the f. 's in (4) produces the1

inequality

(l+ zi)b.
O- _ <k

Special cases of Lemma 2 are stated and used in the analysis of

finite difference equations in [7]3 [8] and in other readily available

literature. Let us now state and prove a lemma which includes Lemma 2

as a special case.

Lemma 3- Let x, f3 g, and z be real valued functions defined

on an interval [a, b] with g and z nonnegative and let

< _l < "'" < _ be a sequence of numbers in [a, b]. Ifo m

x(t) _-f(t) + g(t) Z z(xi)x(x i)

_i <t

for all t in [a, b] 3 then for all t in [a_ b]

x(t) -_ f(t) + g(t) Z ( _ (l+g(_j)z(_j))z(_i)f(vi)). (6)

Ti<t _.<_j< t

Proof. Let y be a function defined on the interval [a, b] by the

formula

y(t) = f(t) + g(t) F. z(xi)Y(Xi).

• i< t

(7)
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Obviously the formula

+ g(t) Z ( _ (i + g(Tj)Z(Xj))Z(Xi)f(T ±)y(t) f(t)

< t _i < x < Tki j

(8)

is valid for t in [a, Xl ] and at all points t

Let us assume it is satisfied for t in [a, Xk ].

(_k' min{Tk+l_ b]] we have

where g(t) : O.

Then for t in

y(t) = f(t) + g(t){ r z(xi)Y(Xi) + Z(Xk) [f(Vk)

_i <_k
(9)

+ g( k) z ( H (1 +
Ti< Tk _i < _J< _k

If g(xk) / O, then our assumption implies

r z(xi)_xi) = Z ( _ (i + g(xj)z(xj))z(xi)f(xi)) ,

Ti< _k Ti< VnTi< _J< _k

and making the obvious substitution in (9) we observe that formula (8)

is satisfied for t in (Xk' min[Xk+l' b]). If g(Ti)= 0 for

k __ i > k - p with either k - p = 0 or g(Xk_p) / O, then

y(t) = f(t) + g(t)[ 7. ( H (l+g(xj)z(Tj))z(Ti)f(xi))

Tk_p< T _ • < _.<i TM Xk+l i j Xk+l

+ z (Xk_p)y (Tk_p) + 7. ( H (l+g(T j)z(x j) )z(xi)f(xi) )]
-[.< _.< • .<
i "Ck-p i j "[k-p

= f(t) + g(t) r ( m (l+g(xJ)z(Tj))z(xi)f(Ti))"

• i< T _i < _j< Tk+l
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Hence we may conclude by induction that formula (8) is valid on

[a, b 1.

Now let us define the function m = x - y. Clearly _(t) __0

for t in [aj Xll. Assume re(t) _- 0 on [a, Xkl and let t be

an arbitrary point in (Xk' min[Xk+l' b]). Then

m(t) = g(t) Z z(xi)_(xi) 2 O,

xi -_Xk

and it is immediate from induction that e(t) -2 0 on [a, b]. This

fact together with the previously established validity of formula (8)

completes the proof of our lemma.

To illustrate the usefulness of Lemma 3 we will consider a simple

application in the theory of finite difference equations. First_ how-

ever, it is convenient to introduce some additional notations.

Let p be a positive integer and let _ be a discrete increasing

sequence of points in [-p, _). For each t >- p let xt denote the

largest element in 2 less than t and let _t = IT : xt -2x -2Xt-p'

in G]. We assume that the number of points in Gt is bounded for

all t > - p. If x is a function defined for t __ - p with values

in Rn (the space of n-dimensional column vector& then x(_t) denotes

•.., )_ Rnk vkthe vector (X(Vl) , x(v2) , X(Vk) in where Vl, ...,

is the largest subset of 2 with xt -2 Vk > Vk-1 > "'" > Vl _-Xt-p-

[] ][ designates any appropriate norm definable on R m for arbitrary

m. If A is an m × m matrix then [_I] denotes the smallest number

such that I_u][-_ _ HuH for all u in Rm.
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Let us consider finite difference equations of the form

x(t) = Z A(Tt, Zs)X(Xs) + F(*t, x(%)), t -2 O,
t-p6s_-t

(_o)

where the A(xt, Xs)'S are n x n matrices. F(t, 9) is a function

mapping into R n and defined for t __ -p and all @ in Rn(b+l) where

b is the maximum number of points in any G t. Furthermore, we assume

there exist a positive constant c and a function L(t) such that

ilF(t, q_)II-_L(t)llq)ll (li)

for all t _2 0 and all _ such that ll_II< c. It is clear that for

each specification of x on [-pj 0] there corresponds a unique solu-

tion of equation (10) defined for all t _ 0.

Now for an arbitrary value of t _2 0 let vI > v2 ... > vk denote

the points in G%. We define A*(xt) to be the (b + l) x (b + l)

matrix of n x n matrices Aij(Tt) where Alj(Xt)=A(xt3 vj),

j = l, ..., k_ Ai+l,i(Tt) = I, i = 2, ..., k3 and Aij(Tt) = 0

otherwise. We define the column vector x*(t) in R n(b+l) as

T

(x(t), X(Vl) , ..., X(Vk) , O, ..., O)

and the vector F*(Tt, x*(xt) ) in Rn(b+l) by the formula

7

F*(xt, x*(zt) ) = (F(zt, x((zt)), O, ..., O) •
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It is easily verified that equation (i0) is equivalent to the larger

system of the form

x*(t) : A*(Tt)x*(xt) + F*(xt,x*(xt)), t __ 0. (12)

We shall prove the following boundedness result.

Theorem 1. Let l[ 1-_

t>v

there exists a function g such that

A*(v)]] be bounded for all t __ 0. Suppose

sup[ _A*(_) : v in G, t > v < tl, t __tI a O} -_g(xt) (13)

_T
and that il (i + g(v)L(v)) is bounded for t __O. Then all solutions

vE _

v<t

of equation (i0) starting with sufficiently small initial data are

bounded. If c = _ then all solutions of (i0) are bounded.

Proof. Let v = 0
o

Let vI < v2 < ...

that

if 0 is contained in D and otherwise let v =
o o

denote the positive elements of _. We observe

x*(t) = A*(Vo)X*(Vo) + F(VO, x*(Vo))

for t in (0, Vl] , and it follows easily from induction that in general

x*(t) = I_ A*(vi)x*(Vo) + Z ( _ A*(vj))F(vi, x*(vi) ) (14)

t > vi vi< t
t > vj> vi
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for all t __ 0. Not let u be any real valued function defined on

[-p, _) such that

u(t) _-II l_ A*(wi)llU(Vo) + g(Tt) E L(vi)u(vi).

t > vi vi < t

(15)

Employing Lemma 3 we have

u(t) H il A*(vi)llU(Vo)
t<v.

i

+ g(_t) Z ( _ (i + g(vj)L(wj))L(wi)ll

vi<t vi< vj< t

]] A*(vj) IIU(Wo).

vi> vj

By our hypotheses there exists a constant K1 which bounds

II _ A*(vi)ll for all t __0, so we have
t>v.

i

u(t) -_K 1 (i+
v.<t
1

But then

constant

rT

i_ (1 + g(h)T(_i))
wi< t

is by hypothesis also bounded by some

_, so _-_ may conclude that

u(t) -_Kl_U(Vo) (z6)

for all t > 0. It follows, of course, that lu(O) l < _ implies
KzK2

lu(t) l < c for all t -_O. Now returning to (14) it is clear that (ll)

e

and (13) imply that for llx*(Vo)ll <_---K2 we have
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][x*(t)[[ < [] _ A*(vi)]] [[ x*(Vo)]] + g(xt) E L(vi)][x*(vi)[]
t > vi vi< t

(17)

which is an inequality of the form of (i_). Thus we have by (16) that

IIx*(t)II -_ Kl_IIx_(Vo)II for all t __ 0 and the proof of our Theorem is

complete.

A complementary result concerning stability which is essentially

proved in the proof of Theorem 1 may be stated as follows.

Theorem 2. Assume the hypotheses of Theorem i, suppose _ is not

bounded_ and suppose g(t) _0 as t _. Then all solutions of equa-

tion (10) starting with sufficiently small initial data tend to zero as

t _. If c = _ then all solutions of (10) tend to zero as t _.

Proof. In the proof of Theorem 1 it was shown that

II *(t)ll  -II A*( i)ll IIx*(%)li + g(xt )

t >v i

Z ( _ (l+g(vj)L(vj)L(vj))L(vi)
.< t

vi< t vi< v J

II A*( j)II II x*(%)ll,
vi> vj

(18)

for all sufficiently small initial data and for all initial data if

c = _. Since our hypotheses imply that both terms on the right hand

side of inequality (18) tend to zero as t _, Theorem 2 is proved.

For a large number of results related to the boundedness and s'tabi-

lity of finite difference equations the reader is referred to [3], [4],

and [9]. There is also a wealth of material available in recent Russian

literature.
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The next step in this development is to establish a lemma

which generalizes Lemma1. However, this generalization is only pre-

paratory for establishing our most all inclusive lemmawhich contains

both Lemma1 and Lemma3 as special cases. Weshall apply our results

in the analysis of a general class of nonlinear integral equations of

the Volterra type. Before proceeding, however, let us first review

a few of the basic notions involved in constructing Riemann-StieltJes

integrals.

For an interval

this interval by P.

a = t ° < t I _ ... _ tm_1 _ tm = b. If f, x, and

boundedfunctions defined on the interval [a, b],

form

[a, b] we denote an arbitrary partition of

That is, P = [to, tl, ..., tm} where

are arbitrary

then a sum of the

m

S(P, f, _) = Z f(Vk )(_(tk) - _(tk_l)) (19)
k=l

is called a Riemann-Stieltjes sum of f with respect to _. f is

referred to as Riemann integrable with respect to _ on [a, b] if

there exists a number L having the following properties : For every

c > O, there exists a partition Pc on [a, b] such that for every

partition P such that Pc C P and every choice of the points vk in

[tk_l, tk] , we have IS(P, f, _) - L I < c. A n-dimensional vector func-

tion F = (fl' f2' ..., fn) is referred to as Riemann integrable with

respect to _ on [a, b] if such is true for each component function
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fi' i = 1,2, ..., n. When the limit L (or (h' _' "'" Ln) in
b

the vector case) exists, then it is denoted by f f(_)dg(_) (or
b a

F(T)d_(_) in the vector case). For an excellent account of the

a

elementary theory of ttie_rm-StieltJes integrals the reader is re-

ferred to [1].

Lemma 4. Let x3 f, g, and z be real valued functions de-

fined on an interval [a, b] and either continuous or of bounded

variatlo_ . Let g and z be nonnegative and let _ be a non-

decreasing continuous functional defined on [a# hi. If for all t

in [a, b ]

t

x(t) -_f(t) + g(t) _ z(T)x(X)d_(T),
a

(20)

then

t t

x(t) _ f(t) + g(t) _ f(x)z(v)exp (_ g(s)z(s)d_(s))dg(_),
a

(21)

for all t in [a, b].

t

Proof. Since the function exp (_ z(s)d_(s)_ for v in [a, tl is

continuous and of bounded variation, we know from the elementary theory

of Riemann-StieltJes integrals that the function y given by the formula

t t

y(t) = f(t) + g(t) f f(x)z(_) axp (_ g(s)z(s)d_(s))d_(x)
a T

(22)

is well defined and continuous. We will show that
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t t
- f f(,)d(e p(f

a

t t

= f
a

(23)

Let p = (to, tl, ..., tin) be an arbitrary partition of [a, t]

such that Itk - tk_ll < 5 for k = 1,2, ..., m. Considering the

corresponding Riemann-StieltJes sum for the integral on the left hand

side of (23) _e have

m t t

Z f(_k)[exp(f z(s)d_(s)) - exp(/ z(s)d_(s))J

k=l t k tk_ 1

m t

= Z Z(_k)f(Tk)exp( f z(s)d_(s))(_(tk) - _(tk_l))

k=-i zk

m t tk

+ Z Z(Tk)f(Tk)exp(f z(s)d_(s)(exp(- f z(s)d_(s)) - l)(_(tk)- _(tk_ I))

k=l zk
k (24)

+

+

m t

Z f(xk)exp(f z(s)d_(s))(Z(Vk) - Z(Xk))(_(t k) - _(tk_ I))

k=l t k

m t _

_ f(Tk)exp( f z(s)d_(s))( E

k=l tk i--2

1
_, Z(Vk)i(_(tk ) - _(tk_l))i),

where Zk and vk are points in the interval [tk_l, tk].

Letting 5 take on a sequence of values 5, n = l_ 2, ...,

tending to zero we observe that the only term on the right hand side of

the equality sign in (24) which does not tend to zero in the first. But,

of course, the first term is just a Riemann-StieltJes sum for the integral

on the right hand side of (23), so we have established the validity of (23)
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tion

Let us now show that y as defined by (22) satisfies the equa-

t

y(t) = f(t) + g(t) f z(x)y(x)d_(x)

a

(2_)

on the interval [a, b]. Considering the integral

t _ T

I(t) = f z(_){f(_) + g(_) .i"z(v)f(v)exp(f g(s)z(s)dn(s))]dn(_ )

a a v

t t T

= _ z(x)f(x)dn(x ) + f z(x)g(x)exp(f g(s)z(s)dn(s)) f z(v)f(v)

a a a a

P

/ g(s)z(sldn(s))an( ),
a

we obtain, using the integrations by parts formula for Riemann-StieltJes

integrals that

t t v

I(t) = I z(x)f(x)dn(x) + f [z(v)f(v)exp(- _ g(slz(sldn(s))dn(v)]
a a a

T

d(exp f g(s)z(s)d_(s)) = y(t) - f(t),
a

which, of course, implies (2_).

Defining _(t) = y(t) . x(t) and using (20) and (2_) we have

t

_(t) -_ g(t) ]" z(x)a_(x)d_](x).
a

(26)

Furthermore, if we define the operator T for bounded functions u

on [a, b] by the formula



t
T(u(t)) = g(t) _ z(x)u(x)d_(x),

a

we see that (26) implies

_(t) __T(_(t)) -_T2(m(t)) -_ ... a Tn(_(t)) _a ..., (27)

for all t

trary n,

Tn((_(t ) )

in [a, b] where Tk(_(t)) = T(Tk-l(_(t))). But for arbi-

t Xl

I z( llg( l) I ...
a a

Tn_ I

Z(_n)_O(Tn)d_(_n)d_(_n_ l) ... d_(_l),
a

so letting m1 = max[z(t)g(t):

in [a, b]] we have

mn((o(t)) ___

t in [a, b]] and m2 = max[I_(t) l : t

m2(_(t) - _(a)) n

n'

Hence clearly Tn(_(t)) -_ 0 as n -_ and we may conclude from (27) that

re(t) __ 0 for arbitrary t in [a, b]. Therefore, we have proven that

x(t) -_y(t) which was, of course, our objective, and Lem_a 3 is estab-

lished.

Now for the purpose of providing a unified formulation for discrete,

continuous, and discontinuous problems, we present a lemma which simul-

taneously generalizes Lemma 3 and Lemma 4.
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Lemma _. Let x, f, g, and z be real valued functions defined

on aninterval [a, b] and either continuous or of bounded variation. Let

g and z be nonnegatlve. Let _ be a nondecreasing functional defined

on [a - cj bl for some _ > 0 which is continuous from the leftj and let

x, f3 g, and z be continuous from the right at all points of discontinuity

of _. If for all t in [a, b]

t-

x(t) -_ f(t) + g(t) f z(x)x(x)d_(x), (27)
a

then

t-- t--

x(t) -_ f(t) + g(t) f f(T)z(x)exp( _ g(s)z(s)d_(s))d_(x),

a

(28)

for all t in [a, b]. Let So = a, let {_i}, i = 1,2, ... denote the

set of discontinuities of _ in (a, b], and for all t in [a, b] let

h(t) : _(t) - Z J(_i ), (29)

_i <t

when J(t) = _(t+) - _(t). Then for all t in [a, b],

t- _ t

x(t) -_ f(t) + g(t) _ ( J_ (l+g(_i)z(_i)J(_i))exp(_g(s)z(s)dh(s))

a • < < t (30)
z(_)f(_)d_(T).

Furthermore if If(t)l and g(t) are bounded on [a, b] by constants K

and c respectively, then

x(t) -_ K

a<_i<t

for all t in [a, b].

t

(i + cz(_i)J(_i))exp(c _ z(s)dh(s)) (31)
a

Proof. Clearly we have by hypothesis that

t

x(t) _- f(t) + g(t) I z(x)x(xldn(v) + g(t)
a

Since

Z z(_i)x(_i)J(_i).

_i< t

is obviously continuous as well as nondecreasing it follows from

Lemma 4 that
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x(t) -_f(t) + g(t) _. z(_i)x(_i)J(_i)

_i_ t

t t

+ g(t) I z(x)exp(I g(s)z(s)dn(s))(f(x)
a

+ g(x) 7. z(_j)x(_j)J(_j))d_(x),
<

and consequently

t t

x(t) -_f(t) + g(t) Z tz(_j)x(_j)J(_j) + g(t) _ z(x)exp(l g(s)z(s)d_(s))f(v)d_(v)

(32)
t

+ g(t)exp( I g(x)z(x)dn(x))I(t),

whe re

t T

l(t) = _ z(T)g(x)exp(- _ g(s)z(s)d_(s))
a

Z z(_i)x (_i)J(_i)dq(_ )•

< T

Using the integration by parts formula we have

t

I(t) = - exp(- I g(_)z(T)dq(_)) 7. z(_i)x(_i)J(_i)

a _i< t

+ 7. exp(- I g(s)z(s)dq(s))z(_i)x(_i)J(_i) ,

_i< t a

and substituting in (32) it follows that

t t

x(t) -_f(t) + g(t) I z(T)exp( _ g(s)z(s)d_(s))f(_)d_(_)
a

+ g(t) _. exp(

_i< t

t

g(X)z (x)d_(x))z (_i)J(_i)x(_i )"

(33)
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Now for arbitrary 8 > 0 we can choose a finite subset [vi},

.. = a andi = %1, ., m, of [_i}, i = %1, ..._ such that v°

t

g(t) E exp (f g(s)z(s)d_(s))z(_i)J(_i)x(_i)

_i< t _i (34)

g(t)

t

Z exp( % g(s)z(s)d_(s))z(vl)J(vi)x(vl) + 5(t)

vi< t vi

w_re 15(t)l < 6 for all t in [a, bl. Substituting (3_) into (33)

and envoking Lemma 3 it follows that

x(t)
__F6(t ) + g(t) _ ( _ (l+g(vj)z(vj)J(vj))

vi< t vi< .< t3

t

exp( f g(s)z(s)d_s))z(vi)J(vi)F6(Xj) ,

v±

(37)

whe re

t t

Fs(t ) = f(t) + g(t) f z(z)exp(f g(slz(s)dn(sl)f(T)dn(x) + 8(t).
a

Again using the integration by parts formula we may observe that

g(t)
E ( _v < (l+g(vJ)Z(VJ)J(vj))g(vi)z(vi)J(vi)

vi< t vi< . t0

vi t

f exp(/ g(s)z(s)d_(s))z(_)f(x)d_(_))

_t t
= - g(t) f exp(f g(s)z(s)d_(s))z(x)f(x)d_(x)

a

Vi+l

+ g(t) Z ( _ (l+g(vj)z(vj)J(vj))(f
.< t vivi<_t vi< vj

(36)

t

exp(fg(s)z(s)dn(s))
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where Tt denotes the largest member of [vi}, i = 0,I, ..., m

which is less than t. Now substituting (36) into (35) we have that

x(t) -_

+ g(t) E ( ]_

v.< t vi< vj< tI

+ g(t) r.

vi< _t

t t

51(t) + f(t) + g(t) f exp(f g(s)z(s)d_(s))z(T)f(_)dh(T)

_t T

t (37)

(l+g(vj)z(vj)J(vj))exp(f g(s)z(s)d_(s))z(vi)f(vi)J(vl))

vi

t

fVi+l( _ (l+g(vj)z(vj)J(vj))exp(f g(s)z(s)d_(s))z(T)f(x)d_(x))#

vi vi< vj< t x

where

5l(t) = 8(t) + g(t) E ( _ (1 + g(vj)z ))
vi<t vi< vj<t (vj)J(vj

t

e p(I
vi

Furthermore, it is easily verified that the right hand side of (37) reduces

to yield the inequality

t_

x(t) -_ f(t)+g(t) I (

a x <vi<t
(i + g(vi_z(vi)J(vi) )

t

exp( f
T

+

Since 51(t ) is bounded on [a, b] by a constant times 8 and 8 may

be chosen arbitrarily small, it follows that
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tm

x(t) -_f(t) + g(t) f ( _ (i + g(_i)z(_i)J(_i))

a • < __i< t

t

exp ( _ g(s)z(s)d_(s))z(T)f(_)d_(x).

(38)

M_king the observation that

E (i + g(_i)z(_i)J(_i)) -_exp( Z g(_i)z(_i)J(_i)),

< _i< t x < _i< t

we see that (38) implies

tu

x(t) -_f(t) + g(t)
a

tm

exp(_ g(s)z(s)d_(s))z(T)f(x)d_('c).

Substituting the bounds K and c for If(t)l and g(t) respectively

in (38)_ we may verify that

x(t) _-K II
a < _i< t

t

(1 + cz(_i)J(_i))exp(c _ z(s)d_(s)),
a

and the proof of our lemma is complete.

One may verify that Lemma _ similar to our previous lemmas pre-

sents a "best possible" inequality. That is, if the inequality sign

in (27) is replaced by equality then the same may be done in (30).

Consider now a function K(t, _, @) mapping [0, _) x [0, _) x Rn

into Rn which is either continuous in T or of bounded variation on bounded

intervals in _. Suppose there exists positive functions g and L on

[0, _) which are either continuous or of bounded variation on bounded

intervals and are such that for all @l and @2 in Rn,
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IlK(t, _, _Z) - K(t, _, _2)Jl -_g(t)L(_)ll_ 1 - _211. (59)

As a straightforward application of Lemma 5 we shall present a result

concerning Volterra integral equations of the form

t_

x(t) = f(t) + f K(t, _, x(_))dg(_), t -_0, (40)

0

when f is either continuous or of bounded variation o_ bounded inter-

vals and _ is nondecreasing and continuous from the left. We assume

g, f, and L are continuous from the right at all points of dlscon-

tinulty of g.

Theorem 5. Suppose equation (40) has a bounded solution x defined on

[0, _). Suppose g is bounded and

O0

f T.(_)_(_)<-. (41)
0

If h

of bounded variations o_ bounded intervals and such that

is bounded on [0, _), then any solution of the equation

t-

y(t) = h(t) + f K(t, x, y(x))dg(T)
0

is bounded. Furthermore, if g(t) _ 0 and

t -_3 then llx(t) - y(t)ll -_ 0 as t -_.

is a function defined on [0, _) which is either continuous or

llf(t) - h(t)l I

Ill(t) - h(t)ll _o

(_)

as
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Proof. Clearly

tN

x(t) - y(t) = f(t) - h(t) + f (K(t, T, x(x)) - K(t, T, y(T))d_(x),
0

so by (39)_ haw

t_

fix(t) - Y(t)II -_ Ilf(t) - h(t)II + g(t) f L(x)IIx(T) - y(T)lld_(T ).
0

(43)

Hence envoking Lemma _ we have

llx(t)- y(t)ll-_llf(t)-h(t)ll
(44)

t- t

+ g(t) _ ( _ (l+g(_i)L(_i)J(_i))exp(_ g(s)n(s)_u(s)L(_)llf(_)-h(_)Ild_(T)
a • < _i< t

where {_i} , i = 1,2, ... denote the discontinuities in _,

_(t): _(t)- E J(_i),
_i<t

and J(t) : _(t+) - _(t). BY hypothesis there exist constants b and

c which bound g(t) and llf(t)- h(t)ll on [0, _) respectively, so

we conclude from (44) that

t

llx(t)- y(t)ll-_c iI (i + bL(_i)J(_i_exp(b _ L(s)d_(s))

_i <t a

t-

-_c exp (b I L(_)dg(_)).
0

(_)

Since I L(T)d_(_) < _ and x is bounded on [0, _),
0

is bounded on [0, _). We also observe from (44) that

it follows that y
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tl

fix(t) _ y(t)lI __ llf(t) - h(t)ii + cg(t) (exp(b f L(T)d_(T)) i)
b " "

0

Thus it is clear that if g(t) -_0 and Ill(t) - h(t)lI -_0 as t -_

then llx(t) - y(t)lI -_0 as t -_ and our theorem is proved.






